
 

  

In this section we will some introductory topics in fast flows (called compressible 

flow). These include the regions of flow and isentropic flows.  
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FLUIDS 3 
AN INTRODUCTION TO COMPRESSIBLE FLOW 

OVERVIEW 

 

In this section you’ll learn about: 

• Flow types and regimes (particularly with respect to 

compressible and fast flows). 

• Isentropic flow 

• The speed of sound 

• Flow through nozzles  

• A qualitative introduction to shockwaves 

ASSUMED KNOWLEDGE FOR THIS SECTION 

 

It is assumed that you already have a knowledge of the following topics: 

 

• Basic fluid Mechanics – The Continuity Equation, Bernoulli’s 

Equation and Forces in Fluids 

 

• Fluid parameters – Density, Pressure and Viscosity. 

 

• Fluid Statics – Hydrostaic pressure  

 

  

OBJECTIVE 

To understand the 

ideas behind 

compressible flow and 

do basic isentropic 

calculations 
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TOPIC 1 – REVIEW OF FLOW TYPES  

 

Liquids are not compressible. Gases can also be treated as incompressible, providing that they are 

travelling (or something is travelling through them) at less than 0.3 the speed of sound (known as Mach 

0.3). Slow gases like these are incompressible because, when something moves through them, a 

pressure wave (a sound wave, if you like) travels ahead and “tells” the molecules to “get out of the 

way” – to rearrange themselves. Molecules have repulsive forces between them and don’t “like” being 

pushed too close together - these forces are caused by the electrons in the fluid molecules repelling 

each other. 

 

 

 

 

If, however, the object gets faster, eventually the molecules in front can’t get out of the way in time 

(because the object is travelling so fast that there’s little time for them to rearrange themselves) and 

they “bunch up.” This region is called “compressible flow” and the density of the fluid is no longer a 

constant though it. Also, because the flow is now moving much faster, it heats up, and heat energy 

must be incorporated into our equations.  

This situation gets progressively worse between Mach 0.3 and Mach 1. The result is that the answers 

given by our equations for incompressible flow (for example, Bernoulli’s Equation) become less and 

less accurate.    

When the flow or the moving object reaches the speed of sound, it is finally moving faster than the air 

molecules themselves. Because of this, they have no warning at all of its approach and the “bunching” 

becomes extreme – they form a dense, hot, viscous layer known as a shockwave. Shockwaves dominate 

supersonic flow and form when the flow encounters an obstacle or a supersonic object moves through 

them. As homework have a look at some videos on shockwave on youtube.   

 

 

 

 

Object moving much 

more slowly than speed 

of sound 

A moving object generates a 

pressure wave which propagates 

at the speed of sound and 

redistributes molecules ahead of 

the object 

Object moving at more 

than the speed of sound 

The moving object outruns the 

pressure wave and gas in front of 

the object can’t “get out of the 

way,” so it bunches up and forms 

a shockwave.  

Shockwave 
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The final flow regime occurs when the flow gets so hot that the component gasses break-down and 

start reacting chemically with each other. This occurs above about Mach 5 in are and we say that the 

flow is Hypersonic.    

Despite some difficulties in working out the formulae, the equations for compressible and supersonic 

flow are fairly simple. However, some complex problems do occur in the so called Transonic region - 

in which some of the flow is subsonic and some supersonic. This is because the flow is neither “one 

thing nor the other” – it displays traits of both types - and neither set of equations gives very accurate 

results (most of the data comes from experiment). Unfortunately, a lot of flow situations (such as 

modern passenger aircraft design) are in this region. 

 

 

 

 

 

TOPIC 2 – ISENTROPIC FLOWS 

 

Isentropic flows are simple compressible flows, without shockwaves. They occur mainly in two 

circumstances: 

1. In the flow region between Mach 0.3 and Mach 1, before shockwaves form. 

2. In supersonic flow, without shockwaves (there may be no shockwaves present, because the flow 

does not encounter an obstacle or because it changes its parameters very gently and smoothly). 

Also, it is assumed that there is no energy added or leaking from the flow (so, no added heat, chemical 

reactions, etc). More formally, this means that such flows are: 

• Adiabatic - There is no heat transfer between the fluid and its surroundings.  

• Reversible - There are no frictional losses in the system (entropy is constant).  

 

Although heat is not transferred, the temperature of the flow can of course vary - because of exchange 

between the kinetic energy and internal energy of the flow. 

Mach 0.5 1 2 3 4 5 6 7 8 9 10 

Compressible flow Incompressible flow  

    Subsonic   Transonic           Supersonic        Hypersonic 
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Let’s now look at the important equations which govern isentropic flows: 

a) The energy equation.  

The energy equation is a statement of energy conservation like Bernoulli’s equation. However, we 

need to add in an expression for heat energy: 

CmTE =  

And like the other energy equations in fluids, state it as an energy density (energy per cubic meter): 

TCEdensity =  

We can add this into Bernoulli’s equation, remove the energy terms which are negligible in fast flows 

(the hydrostatic pressure terms) and then divide through by ρ to give: 

C T
V

constp + =

2

2
 

Which is usually called the Energy balance equation. 

This means that if the flow slows down, the kinetic energy decreases but the heat energy (and 

hence the temperature) of the flow increases. The opposite is also true of course. The meaning 

of Cp is explained in the section below. 

 

 

 

Along a streamline 

TASK 1 
 
Consider the two points on the streamline around a wing shown below: 

 

 
Assuming the fluid is air (Cp = 1005 JKg-1K-1), what is the expected temperature (in 0C) at point 
B, assuming isentropic flow? 
 

 

Point A, Temperature = 50oC 

Velocity = 150ms-1 Point B,  

Velocity = 250ms-1 
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b) Thermodynamic equations and relationships  
 

To derive the remaining equations, we need some basic thermodynamics. One important and 

useful relationship is the equation of state: 

RTp =  

The parameter R is the gas constant (287 J Kg K).  

Another couple of simple formulae are useful. 

If we have a fixed pressure of gas and we change its volume the internal energy changes as 

shown below. 

C dT pdvp = −  

Alternatively, we could keep the volume fixed and change the pressure.  

C dT vdpv =  

Note that specific heats for each process are different. In fact, the ratio of these two 

specific heats occurs so often in the equations that it’s given a special symbol.  

 =
C

C

p

v

 

For air at standard conditions   1.4 

The relationship between Cp and Cv may also be expressed as  

C T C T
p

p v= +


 

By simple manipulation be can also get: 

1

1

−
=

−
=







R
C

R
C

v

p

 

 

 

 

 

Constant Pressure 

Process 

Constant Volume 

Process 
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c) Basic relationships between density, pressure and temperature 
 

Let’s start by dividing the two equations above. 

−
=

pdv

vdp

C

C

p

v

 

This can be rearranged. 

dp

p

C

C

dv

v

v

p

= −  

or 

dp

p

dv

v
= −

1


 

We can integrate this 

dp

p

dv

v
v

v

p

p

= − 
1

1

2

1

2


 

 = −ln ln
p

p

v

v

2

1

2

1

1


 

 =










−
p

p

v

v

2

1

2

1



 

Since we are talking about points in space (specific volumes) v1 = 1/1 and v2 = 1/2  so 

p

p

2

1

2

1

=
















 

c) Relationship between pressure and temperature 

Using the equation of state p = RT rearranged to  = p/RT 

p

p

p

RT

RT

p

2

1

2

2

1

1

=











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Which reduces to  

p

p

T

T

2

1

2

1

1

=










−

( )

 

 

TOPIC 3 – THE SPEED OF SOUND 

 

Knowing the speed of sound in a fluid is important as it tells us when shockwaves will form. 

It’s possible to derive an expression for the speed using only basic parameters. Let’s start with 

the continuity equation. 

1A1V1 = 2A2V2 

Let us say that a sound wave is propagating up a streamline from position 1 to position 2. We’ll 

say the areas are the same (A1 = A2) and that at position 2 the density is 1 + d and the 

velocity is V1 + dV. So (dropping the subscript) 

V = ( + d)(V + dV) 

We can multiply this out and arrange it, to produce 

V
dV

d
= 


 

TASK 2 
 

a) Assuming that the static pressure at point A in task 1 is 1 bar, calculate the 
pressure at point B. Calculate the density at points A and B (assume   1.4).  

b) The exit velocity from a rocket engine is given by: 
 



























−=

−



 1

12
c

e
cpe

p

p
TCv  

Where the subscript c indicates conditions in the combustion chamber and e 
conditions at the exhaust. The process can be considered basically isentropic. 
Derive this equation (hint: you’ll need the energy balance equation and the 
isentropic relationships from the last section).     
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Now, we can substitute Eulers equation (dp = -VdV ) into this 

V
d

dp

dV
=




 

This can be shown to be equal to  

V
dp

d
=


 

 

It’s also fairly easy to show from this that  

V RT=   

So the speed of sound in a fluid depends only on the temperature of the fluid. In books and 

other literature the speed is often given the symbol a. Another important symbol which relates 

to this is the Mach Number M. M is the speed relative to the speed of sound. So M = 0 means 

the fluid (or an object in the fluid) is not moving. M = 1 means that the object is moving at 

the speed of sound and M = 2 means it is moving at twice the speed of sound.  

 

 

 

 

 

 

 

 

TASK 3 
 
Calculate the speed of sound at points A and B in system described in tasks 1 and 2 
and hence the Mach numbers of the flow at these points.   
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TOPIC 4 – SHOCKWAVES 

 

When the speed of flow (or an object in the flow) exceeds the speed of sound for the fluid, 

shock waves are formed. These waves tend to come in three forms - “Normal” shocks which 

are at right angles to the flow, “Oblique” shocks which are at an angle to it. The third type - 

“Expansion fans” occur in the presence of more complex shapes.  The first two types are 

shown in the examples below: 

 

 

 

 

 

 

 

Expansion fans appear in more complex shapes when the body diverges away from the flow. 

 

 

 

 

 

Flow across shock-waves is non-isentropic because the parameters change violently and the 

viscous properties of the fluid cause major thermal effects. The relationship between fluid 

parameters before and after the shocks are given by standard equations or by tables. The 

qualitative situation is shown below: 

 

 

 

 

 

Moving object 

Oblique shock 

Normal  
shock 

“Detached” shock wave At higher speeds, the shock 

wave becomes “attached.” 

Oblique shock 

at corner Expansion fan at 

diverging corner 

M2 > M1 

p2 < p1 

2 < 1 
T2 < T1 
 

M2 < M1 

p2 > p1 

2 > 1 
T2 > T1 
 

M1 

p1 

1 
T1 

M1 

p1 

1 
T1 

M1 

p1 

1 
T1 

Similar to Oblique 

shock except M2 < 1 

 Oblique shock       Expansion fan        Normal shock  
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TOPIC 5 – FLOW THROUGH NOZZLES 

 

In the second year of the course you saw the effect of incompressible flow through a nozzle 

in the form of a Venturi. Let’s now expand this to encompass compressible flow. We will start 

again with the continuity equation: 

AV = Constant 

We can write this in terms of natural logs: 

ln + lnA + lnV = Constant 

and differentiate it: 

d dA

A

dV

V




+ + = 0  

Now using Euler’s equation (dp = -VdV ) rearranged for : 

− + + =
d VdV

dp

dA

A

dV

V


0  

but 
d

dp a


=

1
2 , so: 

− + + =
VdV

a

dA

A

dV

V2 0  

we can arrange this: 

dA

A

VdV

a

dV

V

V

a

dV

V
= − = −









2

2

2 1  

or 

dA

A
M

dV

V
= −( )2 1  

 

This is known as the area-velocity relationship. Let us consider what it tells us about flow 

through nozzles.  
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First a converging nozzle: 

 

 

 

 

 

 

and for a diverging nozzle 

 

 

 

 

 

  

So supersonic flow acts in exactly the opposite way to subsonic flow in nozzles.  

A converging / diverging nozzle arranged so that M = 1 at the throat is known as a de lavel 

nozzle - this is the basis of (among other things) the rocket engine.  

 

 

 

 

 

 

 

 

 

If M < 1 (which means that (M2 -1) < 0) and dA decreases, 
then dV must increase.  
 
 If M > 1 (which means that (M2 -1) > 0) and dA decreases, 
then dV must decrease.  
 

If M < 1 (which means that (M2 -1) < 0) and dA increases, 
then dV must decrease.  
 
 If M > 1 (which means that (M2 -1) > 0) and dA increases, 
then dV must increase.  
 

Combustion 

chamber 

M < 1 M > 1 

Normal shock  
at throat 

Speed rises though nozzle - in converging 
subsonic section and in diverging supersonic 
section 
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SUMMARY 

 

• Compressible flow conditions apply when density in a flow can no longer be considered 

constant – typically in fast gaseous flows (or objects travelling fast through gases).  

• At air speeds above about Mach 0.3 (110m/s in air at S.T.P.) the flow progressively becomes 

more compressible and incompressible equations like Bernoulli’s become gradually less 

accurate until they no longer apply. 

• Compressible flow can be divided up into several types: 

o Subsonic – with no shockwaves, below Mach 1 

o Standard supersonic – with shockwaves, above Mach 1 

o Transonic – which is a mixture of both types 

o Hypersonic – where the flow is so hot that chemical reactions occur, typically above 

Mach 5 

• Isentropic flow is adiabatic and inviscid (reversible – no increase in entropy) 

• Isentropic flows generally apply to compressible flows below Mach 1 and supersonic flow 

without shockwaves.  

• Summary of isentropic equations:     

 

C T
V

constp + =

2

2
 

 

p

p

T

T

2

1

2

1

2

1

1

=








 =











−









( )

 

 
 

AV const=  

 

p = RT 
 

 

• Shockwaves dominate practical flow calculations above Mach 1 

• Shockwaves are not isentropic and require their own equations to predict 

• The three common phenomena associated with shockwaves are Normal shocks, Oblique 

Shocks and Expansion fans.  

• Normal shocks occur when a flow drops from super to sub-sonic. Oblique shocks when an 

object causes the flow to turn into itself and Expansion fans when the flow turns away from 

itself.  

• Flow travelling through a shockwave slows down, but most other parameters increase. 

• Subsonic flow through a diverging nozzle speeds up, but it slows through a converging one 

(the opposite of subsonic flow) – this is the basis of the rocket engine (and a variety of other 

propulsion systems).   

 

Energy Balance equation 
 
 
 
Pressure, density and 
temperature relationships 
 
 
Continuity equation 
 
Equation of state 
 


